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LETTER TO THE EDITOR 

Large-cell Monte Carlo renormalisation group for 
quantum percolation 

K C Chang? and T Odagaki 
Department of Physics, Brandeis University, Waltham, Massachusetts 02254, USA 

Received 21 July 1987 

Abstract. With the use of a large-cell Monte Carlo renormalisation group method, the 
quantum percolation threshold is determined to be 0.42 for the site problem and 0.30 for 
the bond problem in a simple cubic lattice. 

Quantum percolation processes have been studied extensively during the past ten years. 
The main focus of the research has been to locate the quantum percolation threshold. 
The estimations obtained so far, however, are very scattered and a reliable determination 
of the threshold has long been awaited. For small systems whose linear dimension is 
shorter than the localisation length, the threshold for the quantum and classical 
processes are the same El]. However, estimations for larger systems indicate a sig- 
nificant difference in the threshold for the quantum and classical percolations [2,3]. 
Moreover, recent researches suggested that the critical probability depends on the 
magnetic field [3] and on the strength of tunnelling [4], and thus a more accurate 
determination of the threshold becomes very important. 

In this letter we present a large-cell Monte Carlo renormalisation group analysis 
for the quantum site and bond percolations in a simple cubic lattice. The threshold 
is estimated to be 0.30 for the bond process and 0.42 for the site process, and the 
critical exponent of the correlation length to be 2.1 for both site and bond problems. 
We apply the same method to a square lattice. The result for the square lattice is not 
conclusive. It is safe to say for the square lattice that the threshold is above 0.94 and 
the correlation length critical exponent is about 2.27. 

The quantum percolation process has been formulated by the tight-binding Hamil- 
tonian [ l ]  

where { l i ) }  is a set of localised orthonormal bases. In the site process the site energy 
E ,  is assumed to obey the distribution 

P ( E , )  = x6( & I ) +  ( 1  -x)6(&,  - E R )  (2) 
with eB = 03, and t ,  = r is a constant. In the bond process the site energies take a 
constant value (set to zero) and the nearest-neighbour transfer energy t,, obeys the 
distribution 

P ( t , ) = p 6 ( t , - t ) + ( l - p ) 6 ( t , - t , )  (3) 
with t B  = 0. Sites with infinite site energy and bonds with zero transfer energy represent 
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blocks for the motion of a quantum particle governed by the Schrodinger equation 
with Hamiltonian (1). The percolation threshold is denoted by x, and p ,  for site and 
bond processes, respectively. 

The classical percolation problems have also been formulated as dynamic processes 
described by a random walk equation in place of the Schrodinger equation [5]. 

It might be natural to assume the quantum percolation is a special case of the 
Anderson’s localisation problem [6]. In  this context, the quantum percolation is a 
limiting case of a bimodal distribution for the site energy and for (the logarithm of) 
the transfer energy. The randomness of the bimodal distribution is greatest at 50% of 
the concentration, and thus one would expect the states to be more localised at this 
concentration. However, the percolation threshold is believed to be less than 50% in 
three dimensions [2,3]  and states at 50% are supposed to be more extended than the 
states near the threshold. Furthermore, one might measure the randomness of a 
distribution by its second moment. The second moment of the distribution in quantum 
percolation (for bond problems the second moment of loglti,l is used [7]) is infinity 
and one might expect that all the states must be localised in any dimensions except 
for the pure system [8]. This expectation is totally inconsistent with the observation 
that there is a percolation transition in three and higher dimensions [I-41. I t  is 
interesting to note that the usual parameter W / t  (the ratio of the width of a flat 
distribution of the site energy to the transfer energy) in Anderson’s problem with 
diagonal disorder also determines the probability that the site energy of two sites differs 
by less than t .  (More precisely, it is ( 2  - t /  W )  t /  W.) If we let these sites be connected, 
then we can estimate the critical value for the Anderson problem by equating this 
probability to the critical quantum percolation probability. Therefore it is tempting 
to consider Anderson’s problem be a generalised quantum percolation problem. 

Now we follow the renormalisation group method developed by us [9] with larger 
cell size (see figure 1). The estimation is supposed to become more accurate for larger 
cell sizes. The renormalised occupation probability p ’  for the bond process (x’ for the 
site process) is determined by the probability that a particle attached to one of the 
sites on the left edge at t = 0 appears on the right edge and by a normalisation factor 
which makes p = 1 be one of the stable fixed points of the transformation. That is, 

Figure I .  A cell used in the determination of the renormalisation function R ( p ) .  This cell 
corresponds to b = 3. 
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is the probability that a particle leaving site a (on the left edge) at time t = 0 is at site 
p (on the right edge) at f = for a given configuration, b is the linear dimension of 
the cell, A is the normalisation factor and (. . .) denotes an ensemble average. In our 
previous paper [9] the renormalisation function R(p )  was calculaied exactly for b = 2 
by generating all the configurations and carrying out the ensemble average rigorously. 
For larger cell sizes, however, it is not practical to generate all of the configurations. 
Instead, we use a Monte Carlo method to determine the renormalisation function. For 
a fixed p ,  we generate many configurations of the cell of linear dimension b. For each 
configuration we calculate the probability Pmp and carry out the average in (4) to 
obtain R(p ) .  Then we plot R(p )  against p and determine graphically the unstable 
fixed point p * ( b )  and the slope, A(b) (={dR(p)/dpl,=,*}), of the renormalisation 
function at the fixed point which in turn is used to find the correlation length critical 
exponent v( b )  through In b/ln A ( b ) .  We repeat the same process for different values 
of 6 = 4,6,  8 and 9 taking 50, 30, 5 and 5 samples respectively. The correlation length 
critical exponent is plotted against l / b  and, from the limit of b = 00, v is estimated to 
be 2.1. Following the standard procedure [lo], the critical probability p*(b) for the 
bond problem (x*(  b )  for the site problem) is plotted against b-"" which is shown in 
figure 2 for both site and bond processes in the simple cubic lattice. The limit of this 
plot at b-I"' = 0 determines the percolation threshold for the infinite cell size. The 
best guess for the threshold based on the linear extrapolation is 

xY = 0.42 for the site problem ( 6 )  

pI = 0.30 for the bond problem. (7 )  
It should be remarked here that the linearity in the plot of p * (  b) against b-'/" holds 
asymptotically as b-I"' approaches zero. Therefore, for the range of the cell sizes 
studied here, it may be possible to exploit extrapolation other than a straight line. For 

t " " " " ' 1  1 

0 0.5 1.0 
b-l/V 

Figure 2. Extrapolation of the sequence of fixed points p*(b)  for the bond problem and 
x * ( b )  for the site problem in the simple cubic lattice obtained from (4) for various cell 
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example, extrapolation by a parabola yields xq = 0.43 for the site problem. We simply 
mention here that an error might exist due to the extrapolation and leave the detailed 
discussion of the effect of the extrapolation as a future study. 

We applied the same procesure to the square lattice with b = 4, 8, 15, 20, 25 with 
sample number up to 100. Although the fluctuation of the data is large, p * (  b )  appears 
to increase as the cell size increases, in clear contrast to the plot shown in figure 2 for 
three dimensions. In view of the large fluctuation, it is safe to say that v=2.27 ,  and 
both p q  and xq 20.94. 

The present estimation of the critical quantum percolation probability agrees with 
some of the previous estimations [2-31. The quantum threshold for site and bond 
processes are 35% and 21 YO larger than their classical counterparts, respectively. This 
implies that three possible conduction regimes exist in percolating systems consisting 
of a metal and a non-metal. Above the quantum threshold the conduction is governed 
by the quantum mechanical dynamics and the conductivity is determined by the 
correlation length, i.e. the conductivity is expected to show a dependence on the 
occupation probability as (x - x q ) ”  ( v  = 2.1 in our estimation) [ 111 .  Below the quantum 
threshold, a carrier is supposed to be localised and it is not possible to produce 
conduction alone. However, conduction can take place via phonon assisted hopping. 
The classical percolation threshold plays a role since below the classical threshold 
intercluster hopping determines the conductivity and above the classical threshold 
intracluster hopping within an infinite cluster will give a dominant contribution to the 
conductivity. Therefore one can expect to observe three conduction regimes in percolat- 
ing systems. In  fact Epstein er a1 [12] observed three conduction regimes in Hg-Xe 
mixtures. Moreover, in the metallic region the conductivity showed a power law 
behaviour ( U  - u , ) ~ . ’ ~ ,  U being the volume fraction of Hg and uq the upper critical 
volume fraction. The exponent coincides with our estimation. It will be possible to 
explain two other conduction regimes in Hg-Xe systems from the point of view of 
hopping conduction, which will be studied in the future. 

This work was supported in part by a grant from Research Corporation. 
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